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Graphs of Nodes and Edges
A common mathematical structure is a “Graph”, which is comprised of vertices (a point), sometimes referred to as “nodes”, and 
edges connecting these vertices. Interestingly both Nodes and Edges are a the simplex for 0 dimensional and 1 dimensional spaces 
respectively. So common graphs can be considered to be a mathematical set of zero-dimensional (”0D”) and one-dimensional (”1D”) 
simplexes arranged in some arbitrary yet meaningful manner. However, what happens if we begin to add in higher dimensional 
simplexes?

For example, the two-dimensional (”2D”) simplex, a triangle introduces new questions as a potential graph primitive. First however 
we need to identify a difference in behavior between the existing simplexes - Edges and Nodes. In graphs Nodes and edges link 
one another together, but a single edge can only have at most two nodes it links to. On the other hand a given node can be 
connected to any number of edges except in the case where the type of Graph limits this behavior. How do we understand this 
behavior?

Well, let’s consider that a higher-dimensional simplex always has a number of lower-dimensional simplexes. A triangle is comprised 
of 3 vertices, and 3 edges. An edge is comprised of 2 vertices. A tetrahedron (the “3D” simplex) is comprised of 6 edges, 4 vertices 
and 4 triangles.

This means that to link a higher-dimensional simplex to other higher dimensional simplexes they must have an overlapping 
constituent element - a shared lower dimensional simplex. Given that graphs are often the 0D and 1D simplex, we often only see 
this with vertices. However let’s consider a 3D graph comprised of Triangles. It would be possible for an arbitrary number of triangles 
to share the same edge, as shown in image 1.1.

Image 1.1 - Shared Edge Mesh

This illustrates that given a graph comprised of simplexes of various dimensionality up to some positive integer ordinal dimension , 
any n-dimensional simplex (”n-simplex”) may be connected to other n-simplexes by a shared simplex of lower ( ) dimensionality 
(an ”m-simplex”). Further there is no arbitrary limit on the number of n-simplexes which share an m-simplex. As there are multiple m-
dimensionalities (equal to n-1), we may define the set of m-dimensionalities for a given n value, denoted . This is defined as 
shown Equation 1.1.

Equation 1.1

Therefore we can define the a simplex graph  where  is the highest dimensional simplex found in the graph, and  is 
the set of simplex elements in the graph, being of any dimensionality in the range, .
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Mathematical Definition
A “simplex”( ) is a set with dimensionality (denoted either  or ) comprised of elements which are all lower-dimensionality 
simplexes. 

Given the value,  is the number of  dimensional simplexes comprising a higher dimensional simplex. The following are the  
values for 1 to 3 dimensional simplexes (edges, triangles and tetrahedrons).

 

It can be noted that the dimensionality of a simplex plus 1 ( ) is equal to the  value for that simplex. The  for a given 
simplex of n-dimensionality and i-value is governed by the function  with the definition,

This formula is a generalized representation of the triangle and tetrahedral expansions. [1,2]

Implications in Functional Graph Construction
Now that we have established the above defined relationship for simplex graphs in n-dimensions, there are a number of fascinating 
features arising from such graphs. For example: edge-weighted graphs can be generalized in a few manners:

1. An, “n-simplex weighted graph”, where each distinct simplex which is both not a 0-simplex and not also an element of a higher-
dimensional simplex has an associated weight.

2. A “strict n-simplex weighted graph”, where only n-simplexes have an associated weight.

3. An “edge-weighted graph”, where all 1-simplexes (edges), and only edges have an associated weight. This form of graph 
behaves identical to an arbitrarily constructed 1D graph with homologous connectivity to any high-dimensional simplex graphs 
and so it is a special case.

4. A “[1,n] domain simplex weighted graph”, where all simplexes, including those which are members of other simplexes that are 
also not 0-simplexes (vertices) are assigned a weight.

These four cases do not comprise the only varieties of simplex weighting, but instead are specific cases which can be found from a 
parameterized logic set. The three parameterized axioms that form this logical set are:

The range of dimensionalities whose associated simplexes are assigned a weight. This is denoted by  where,  
and, .

Whether simplexes which are elements of another simplex may be assigned a weight. This is denoted by , which has a 
boolean value equal to either 0 (elements are not assigned a weight) or 1 (elements are assigned a weight).

If only one dimensionality is given associated weights, denoted by , then the 2nd axiom is automatically nullified. As such 
the  parameter, only needs specification when .

Given these three axioms it’s possible to parameterize the possible simplex-weighting logics on a graph via “Simplex Weighting 
Notation”, show in Equation 2.1.

Equation 2.1 - Simplex Weighting Notation

s n dim(s)

s = {S :i {s , s , ..., s }∣i =(i,0) (i,1) (i,z −1)i
{0, 1, ..., (n− 1)}}

dim(s) = n = #s
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The logical notation which maps to each of the possible notations can then be written as shown in Equation 2.2

Equation 2.2 - Simplex Weighting Notation and Logical Notation

This notation can then be used to parameterize the different logic cases, such as the previous 4 varieties of simplex weighting. For 
example,

1. An, “n-simplex weighted graph” assigns every non-zero simplex ( ) up to an n-simplex ( ) a weight value unless it is 
an element of another simplex ( ). This is represented by the notation, .

2. A, “strict n-simplex weighted graph” assigns only n-dimensional simplexes ( ) an associated weight. Since , 
there is no question as to sub-element assignment. Therefore this may be represented by the notation, .

3. A, “edge-weighted graph” assigns only 1-dimensional simplexes (edges) an associated weight. This means ( ) and 
because , there is no need to consider sub-element assignment. This yields the notation, .

4. A, “[1,n] domain simplex weighted graph” associates a weight with every non-zero simplex ( ) , even if they are 
sub-elements of another simplex ( ). The notation for this is, . 

However, what if one wishes to know how many species of simplex-weighted graphs there are for a given dimensionality ( )? Or to 
define permutatively exactly what these species were? First let’s denote the case where , as  and the case of 

, as . The respective species counting functions (”species cardinality functions”) will likewise be denoted,  
and . Given this, the set defining notation of possible species in both cases are defined as shown in Equation 2.3.

Equation 2.3 - Species Set Definitions

The values of  are easily understood as just being the set of rules where there is one rule-set per dimensional ordinal 
between 1 and n. On the other hand, the  value is more complex as it is the combination of all possible values of (x,y) where 

,  and each of the possible  values (1 and 0). An example of the  species is shown in Equation 2.4.

Equation 2.4 - 3D Simplex Weighting Species

  

If one wishes to calculate the size of these sets, the calculation for the  case is simply the size of the set which is equal to the 
dimension parameter ( ). The cardinality for the  case is somewhat more complex though, as it is the 
non-overlapping combinations of possible (x,y) values multiplied by the number of possible b values (2). This results in the formula 
shown in Equation 2.5, which is also the edge-to-vertex formula for a polytope due to the algebraic and geometric relationship 
between those phenomenon. Further, both of the species cardinality functions together are shown in Equation 2.6. 

Equation 2.5 - Cardinality of Simplex Weighting Species

< x,y, b > ∣(∣x− y∣ > 0)
< [x,y], b > ∣(∣x− y∣ > 0)
< x > ∣(∣x− y∣ = 0)

∣x− y∣ > 0 →< x,y, b >
∣x− y∣ = 0 →< x >

x ≥ 1 y = n

b = 0 < 1,n, 0 >

x = y,y = n x = y

< n >

x = y,x = 1
x = y < 1 >

x = 1,x! = y

b = 1 < 1,n, 1 >

n

∣x− y∣ = 0 Λ (n)0

∣x− y∣ > 0 Λ (n)1 Γ (n)0

Γ (n)1

Λ (n) =0 {< x >: x ∈ [1,n]}
Λ (n) =1 {< x,y, b >: x ∈ [1, (y− 1)],y ∈ [(x+ 1),n]}

Λ (n)0

Λ (n)1

1 ≤ x < y x < y ≤ n b Λ (3)1

Λ (3) =1 {< 1, 2, 0 >, < 1, 2, 1 >, < 1, 3, 0 >, < 1, 3, 1 >,
< 2, 3, 0 >, < 2, 3, 1 >}

Λ (n)0

#Λ (n) =0 Γ (n) =0 n Λ (n)1

#Λ (n) =1 ∗ 2 =
2

n(n− 1)
n(n− 1)
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Equation 2.6 - Species Cardinality Functions

These formula further allow the characterization of the simplex graphs via the combined functions in Equation 2.7. Please note the 
sets computed via,  are combined into a single super-set, and likewise the two scalars calculated for  are added together.

Equation 2.7 - Combined Simplex Graph Weighting Formula

Example Usage
In this section a series of examples will be shown to illustrate the usage of the above formula. First, let’s consider the demonstration 
of these formula for 3-dimensional ( ) space. We can use n to calculate the species cardinality as shown in Equation 3.1.

Equation 3.1 - Species Cardinality in n = 3

and to define the set of possible species in Equation 3.2.

Equation 3.2 - Species Set in n = 3

From this we can easily see that the calculation of set-cardinality was accurate for the species set by counting the combined number 
of elements in the set is equal to 9, the same value calculated by the cardinality function. A second and third example can 
respectively be done with the  and  simplex graph spaces.

Equation 3.3 shows the calculation of species and cardinality for .

Equation 3.3 - Species and Cardinality for n = 4

And Equation 3.4 illustrates this same process for .

Equation 3.4 - Species and Cardinality for n = 2

Given these examples one should now be able to employ this formula to calculate the species for a given n-dimensional simplex 
graph.

Practical Implications

#Λ (n) =0 Γ (n) =0 n

#Λ (n) =1 Γ (n) =1 n(n− 1)

Λ(n) Γ(n)

Λ(n) = {
{< x >: x ∈ [1,n]}
{< x,y, b >: x ∈ [1, (y− 1)],y ∈ [(x+ 1),n], b ∈ (0, 1)}

Γ(n, δ) = {
n

n(n− 1)

n = 3

Γ(n) = n+ n(n− 1)
Γ(3) = 3 + 3(3 − 1) = 3 + 6 = 9

Λ(3) = {{< 1 >, < 2 >, < 3 >}, {< 1, 2, 0 >, < 1, 3, 0 >, < 2, 3, 0 >, < 1, 2, 1 >, < 1, 3, 1 >, < 2, 3, 1 >}}
Λ(3) = {< 1 >, < 2 >, < 3 >, < 1, 2, 0 >, < 1, 2, 1 >, < 1, 3, 0 >, < 1, 3, 1 >, < 2, 3, 0 >< 2, 3, 1 >}

n = 2 n = 4

n = 4

Γ(4) = 4 + 4(4 − 1) = 4 + 12 = 16
Λ(4) = {< 1 >, < 2 >, < 3 >, < 4 >, < 1, 2, 0 >, < 1, 2, 1 >, < 1, 3, 0 >, < 1, 3, 1 >, < 1, 4, 0 >, < 1, 4, 1 >, < 2,

n = 2

Γ(2) = 2 + 2(2 − 1) = 2 + 2 = 4
Λ(2) = {< 1 >, < 2 >, < 1, 2, 0 >, < 1, 2, 1 >}
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Given the abstract nature of the above formula, one might ask for a practical application of these techniques. The foremost example 
would be in the practical development of software which supports n-simplex structures. Consider you wish to develop a library that 
provides graphing for up-to 4-simplex systems. You would need to be able to consider the logic of each species before being able to 
devise a shared software interface that encapsulates each of their logics. 

In this circumstance, given the above formula we know this means that you would need to define 16 different class behaviors. To aid 
the developer in doing this, the mechanical methodology of the  function may be employed to generate the notations which 
define the rules for the species. From there a programmer may consider and aptly architect such a solution - allowing them to even 
spot approaches across n-values to allow for the generalization of their library to multiple dimensional simplex graphs. Such an 
approach may prove invaluable in creating highly versatile software, or finding an approach which can construct species via smaller 
logical components.
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