## Proof: Scalar Projection, Vector Projection and Finding the Angle Between Two Vectors

## Definitions

1. The Vector Projection can be thought of as "projecting" a given vector $A$ onto another vector B . So if you have a given vector $A=(7,7)$ and $B=(15,0)$ the result, $\operatorname{proj}(A, B)=(7,0)$.
2. The Scalar Projection can be thought of as the length or magnitude of the projection of a given vector A onto another vector B . So if you have a given vector $A=(7,7)$ and $B=(15,0)$ the result scalar Projection $(A, B)=7$, which you can plainly see is also the magnitude or length of $\operatorname{proj}(A, B)$.
3. The angle between two vectors is pretty self-explanatory, but in this case we'll only talk about 2D until after the proof.

## Relative Angle Orientation \& Scalar Projection

The first thing to understand is that the relative angle between the two vectors $(\theta)$ is the only angle that matters for projections. This could be calculated if each vector had a known angle ( $\theta_{A}, \theta_{B}$ ) and taking the difference of them, $\theta=\theta_{A}-\theta_{B}$ but this does not easily extrapolate into higher dimensions beyond 2D when you don't know the angles already. However a helpful understanding that can be grasped visually is the following,



This is to say that you can rotate both angles so that $B$ is flat on the $x$-axis for easier comprehension of the system. In these circumstances we can also benefit from the polar-to-Cartesian transform of the x-axis component of a vector.

$$
\begin{gathered}
x=r * \cos (\theta) \\
r=\frac{x}{\cos (\theta)} \\
\theta=\cos ^{-1}\left(\frac{x}{r}\right)
\end{gathered}
$$

This tells us that we can get the x -axis length of A by multiplying the length of $\mathrm{A}(r$ here) by the cosine of the angle between A and $\mathrm{B}(\theta)$. We can calculate the value of $r$ with the following equation,

$$
\begin{gathered}
r=\sqrt{x^{2}+y^{2}} \\
\|A\|=\sqrt{A_{x}^{2}+A_{y}^{2}}
\end{gathered}
$$

These two formula are the exact same thing, just written in two ways. From now on we'll refer to the length of $A$ as $\|A\|$ instead of $r$. So the formula becomes,

$$
x=\|A\| * \cos (\theta)
$$

Which is to say that $x$ is the length of A whose component is projected onto B in the same way we treat normal vectors as breakdowns of components projected on the $X$ and Y axis. This is the scalar product (scalar Projection $(A, B)$ ).

Interestingly enough to understand this another way we can use a different equation. If you recall from trigonometry that $\cos (\theta)$ is the $x$-axis part of a vector whose length is 1 , and that you can reduce a vector to a "unit vector" (a vector with a length of 1 ) via the formula,

$$
\hat{B}=\left(\frac{B_{x}}{B_{x}+B_{y}}, \frac{B_{y}}{B_{x}+B_{y}}\right)
$$

Then you can figure out that

$$
\frac{B_{x}}{B_{x}+B_{y}}=\cos (\theta)
$$

Given this you can alternatively calculate the scalar projection of $(A, B)$ via the formula,

$$
A \cdot \hat{B}=A_{x} \hat{B} x+A_{y} \hat{B}_{y}
$$

Where the • symbol means "dot product", which is defined as,

$$
A \cdot B=\sum_{i=1}^{n} A_{i} B_{i}
$$

for n -dimensions. This means the above formula $(A \cdot \hat{B})$ turns out to the following,

$$
A \cdot \hat{B}=A_{x} \hat{B}_{x}+A_{y} 0=A_{x} \hat{B}_{x}
$$

Due to the relative rotation of $B$ acting as the $x$-axis and therefore not having a relative Y component. Just imagine it as the version of the two angles in the second figure above - with $B$ laying flat on the $X$ axis.

This means that you can equate the scalarProjection(A,B) (which we'll just write as $S(A, B)$ ) to the two formula:

$$
S(A, B)=A \cdot \hat{B}=\|A\| \cos (\theta)
$$

## Calculating Cosine

Yet, how do we calculate cosine if we only have A and B and are unable to rotate them like in the above graphical representation? Well with some algebraic rearrangement we can deduce a formula from the definition of the scalar projection.

We know that,

$$
A \cdot \hat{B}=\|A\| \cos (\theta)
$$

Further we can define the relationship between $B$ and $\hat{B}$ via the formula,

$$
\begin{gathered}
B=\hat{B} *\|B\| \\
\hat{B}=\frac{B}{\|B\|}
\end{gathered}
$$

And because dot-products have the commutative multiplication property,

$$
A \cdot B c=A c \cdot B=c(A \cdot B)
$$

We can deduce,

$$
A \cdot B *\|B\|^{-1}=\frac{A \cdot B}{\|B\|}
$$

Therefore,

$$
\frac{A \cdot B}{\|B\|}=\|A\| \cos (\theta)
$$

Which we can simplify into,

$$
\frac{A \cdot B}{\|A\| *\|B\|}=\cos (\theta)
$$

and derive the value of $\theta$ via,

$$
\theta=\cos ^{-1}\left(\frac{A \cdot B}{\|A\| *\|B\|}\right)
$$

Which is the angle between the two vectors.

## Vector Projection

Now, given that we know the angle between two vectors $(\theta)$ and the scalar project ( $s=$ $S(A, B)$ ) we can now calculate the vector projection $(v=V(A, B)$ ) very easily.

Recall the vector projection is a projection of the components of $A$ onto $B$. All we have to do to do this is get the normalized vector of $B(\hat{B})$ and multiply it by the length of $A$ projected onto B - aka the Scalar Product ( $s$ ),

$$
v=s \hat{B}=\|A\| \cos \theta * \frac{B}{\|B\|}
$$

Now that might seem like a rather poor example, but what we can consider it as is that we are taking the vector length of A projected on $\mathrm{B}(s)$ and then we're multiplying it by a unit-vector representing the direction of $\mathrm{B}(\hat{B})$ which gives us a vector in the direction of $B$ with the length of the $A$ vector components when projected onto $B$.

If that is confusing, an example will likely clear things up far better than words!

## Example 1

Given two vectors,

$$
\begin{gathered}
A=(7,7) \\
B=(15,0) \\
\hat{B}=(1,0)
\end{gathered}
$$

The scalar projection is,

$$
s=A \cdot \hat{B}=(7 * 1)+(7 * 0)=7
$$

Which - keep in mind is not the distance of A but the length of A projected onto B. Now given that, we can find the angle between the two,

$$
\begin{gathered}
\theta=\cos ^{1}\left(\frac{A \cdot B}{\|A\| *\|B\|}\right) \\
A \cdot B=(7 * 15)+(7 * 0)=105 \\
\|A\|=\sqrt{7^{2}+7^{2}}=\sqrt{98}=9.8995 \\
\|B\|=\sqrt{15^{2}+0^{2}}=\sqrt{15^{2}}=15 \\
\|A\| *\|B\|=148.4925 \\
\frac{A \cdot B}{\|A\| *\|B\|}=\frac{105}{148.4925}=0.707 \\
\cos ^{1}(0.707)=0.7856 \text { or } 45.01^{\circ}
\end{gathered}
$$

Which makes sense - $A$ is rising and extending at the same amount and $B$ is an $x$-axis only vector. So there's a 45* angle between them, with the 0.01 being the margin of error from rounding the various roots in the formula.

Given this, we can then perform the vector projection,

$$
v=s \hat{B}=7 *(1,0)=(7,0)
$$

So we now can see - we projected the components of $A$ onto $B$, yielding a vector in the direction of $\mathrm{B}((1,0))$ but with length of the A component $(7)$, yielding the vector $((7,0)$ ).

Hopefully that makes some sense.

## Conclusion

This has been a review of the manner I worked through in order to understand how Scalar Projection and Vector Projection work, as well as how to calculate the angle between two vectors. A useful bonus - and why this method is better than simple trigonometry is that it scales to any number of dimensions. Given we can define the magnitude operations (ex: $\|A\|$ ) and the dot product on two vectors, we can calculate the angle between them, and perform all manner of projection on them.

Thus I felt - should I ever forget this, or need to explain to another person this would be a worthwhile explanation and/or proof.

