Formula for Max Neuron Growth Estimates

By Joseph Juma

Introduction

This is the formula I've (re)derived on at least three occasions in the last year. It is for calculating the maximum of neuron growth in a neural network.

Formula

$$n_{i+1} = (2^{n_i} - 1) + n_i | n_0$$

Where, n is the number of nodes from the prior generation, or those which exist to generate output nodes from.

Implications

The fact is this formula has a very small domain of possibly *useful* values. Why? Because it grows quite quickly. The example I begin with is always a single neuron to start with, which yields the table of growth below.

Generation	Input Neurons (n_i)	Output Neurons (n_i+1)
0	1	2
1	2	5
2	5	36
3	36	68719476771
4	68719476771	2.542 * 10^20686623794 + + 68719476770

Now, most calculations of any meaningful will end there, as any computer scientist might point out: a number to such a large magnitude will cause an overflow resulting from not enough memory to allocate for it without a specialized numeric type. If you would like to consider *how big* that 4th generation output is though, consider that the order of magnitude for estimated *atoms in the universe* is within the ballpark of 10⁸⁰ in contrast to this 10²⁰⁶⁸⁶⁶²³⁷⁹⁴.

This ridiculous number clearly illustrates however that the *possibilities of these neurons* in terms of *unique structures* is nigh-endless for all practical concerns, as we are *very unlikely* to stop at just 5 layers (4 generations) of neuron.