Angular Interpolation - Working Notes

These are my personal notes when I was working through a problem. They haven't been edited for understanding. However, the formulas are all useful.

1. At $\theta=90^{\circ}=\frac{\pi}{2} \rightarrow r=2$;
2. At $\theta=180^{\circ}=\pi \rightarrow \mathrm{r}=1$;
3. At $\theta=0 \rightarrow r=1$;
4. At $\theta=270^{\circ}=\frac{3 \pi}{2} \rightarrow \mathrm{r}=2$;
$r=(|\sin (\theta)| * 2)+(|\cos (\theta)| * 1)$
If we say that $r_{1}=1$ and $r_{2}=2$ then...

$$
r=\left|\sin (\theta) r_{2}\right|+\left|\cos (\theta) r_{1}\right|
$$

- Note that the r2 and r1 can either be inside or outside the absolute value without changing the result.

Ok, so what if $\theta=45^{\circ}=\frac{\pi}{4}$? That's $\mathrm{x}=0.707, \mathrm{y}=0.707$, huh I see.

Here are a few formula, we're plugging in theta $=45$ degrees .
$r=(1-\sin (\theta)) r_{1}+\sin (\theta)_{r} 2=0.203 r_{1}+0.707 r_{2}=0.203+1.414=1.617$
This is wrong, as the goal at 45 degrees should be equal values of $r_{_} 1$ and $r_{-} 2$.

$$
r=\left|\sin (\theta) r_{2}\right|+\left|\cos (\theta) r_{1}\right|=1.414+0.707=2.121
$$

This is wrong, as it goes over r _ 2 which should be the maximum value of r.

$$
r=r_{1} \frac{\sin (\theta)}{\sin (\theta)+\cos (\theta)}+r_{2} \frac{\cos (\theta)}{\cos (\theta)+\sin (\theta)}=r_{1} 0.5+r_{2} 0.5=1.5
$$

This feels far more correct as 45* equates to a ratio of $1 / 2 r _1$ and $1 / 2 r _2$. So I will consider this to be angular interpolation, which makes sense given sin and cos are complementary functions, and so they should be calculated as a fraction of their whole to normalize them.

ANGULAR INTERPOLATION IS GREAT!

Let's test it at extrema?

Given the following shorthand,

$$
\begin{gathered}
\sin ^{\prime}(\theta)=\frac{\sin (\theta)}{\sin (\theta)+\cos (\theta)} \\
\cos ^{\prime}(\theta)=\frac{\cos (\theta)}{\sin (\theta)+\cos (\theta)} \\
\text { given } \theta=\left[45^{\circ}, 0^{\circ}, 90^{\circ}\right] \\
\sin ^{\prime}(\theta)=[0.5,0,1] \\
\cos ^{\prime}(\theta)=[0.5,1,0] \\
\text { given } \theta=\left[30^{\circ}, 60^{\circ}\right] \\
\sin ^{\prime}(\theta)=[0.36602,0.63397] \\
\cos ^{\prime}(\theta)=[0.63397,0.36602]
\end{gathered}
$$

Ok, so those are interesting. You'd think since 60 is 2×30, and together they equate to 1 , that it would be the classic 0.333 and 0.666 , but instead it's just shy of that behavior at 0.633 and 0.366 .

